skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Biondini, Gino"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 7, 2025
  2. Abstract In this paper, we focus on a discrete physical model describing granular crystals, whose equations of motion can be described by a system of differential difference equations. After revisiting earlier continuum approximations, we propose a regularized continuum model variant to approximate the discrete granular crystal model through a suitable partial differential equation. We then compute, both analytically and numerically, its travelling wave and periodic travelling wave solutions, in addition to its conservation laws. Next, using the periodic solutions, we describe quantitatively various features of the dispersive shock wave (DSW) by applying Whitham modulation theory and the DSW fitting method. Finally, we perform several sets of systematic numerical simulations to compare the corresponding DSW results with the theoretical predictions and illustrate that the continuum model provides a good approximation of the underlying discrete one. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. The aim of this work is multifold. Firstly, it intends to present a complete, quantitative and self-contained description of the periodic traveling wave solutions and Whitham modulation equations for the Toda lattice, combining results from different previous works in the literature. Specifically, we connect the Whitham modulation equations and a detailed expression for the periodic traveling wave solutions of the Toda lattice. Along the way, some key details are filled in, such as the explicit expression of the characteristic speeds of the genus-one Toda–Whitham system. Secondly, we use these tools to obtain a detailed quantitative characterization of the dispersive shocks of the Toda system. Lastly, we validate the relevant analysis by performing a detailed comparison with direct numerical simulations. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  4. We present an analytical model of integrable turbulence in the focusing nonlinear Schrödinger (fNLS) equation, generated by a one-parameter family of finite-band elliptic potentials in the semiclassical limit. We show that the spectrum of these potentials exhibits a thermodynamic band/gap scaling compatible with that of soliton and breather gases depending on the value of the elliptic parameter 𝑚 of the potential. We then demonstrate that, upon augmenting the potential by a small random noise (which is inevitably present in real physical systems), the solution of the fNLS equation evolves into a fully randomized, spatially homogeneous breather gas, a phenomenon we call breather gas fission. We show that the statistical properties of the breather gas at large times are determined by the spectral density of states generated by the unperturbed initial potential. We analytically compute the kurtosis of the breather gas as a function of the elliptic parameter 𝑚 , and we show that it is greater than 2 for all nonzero 𝑚 , implying non-Gaussian statistics. Finally, we verify the theoretical predictions by comparison with direct numerical simulations of the fNLS equation. These results establish a link between semiclassical limits of integrable systems and the statistical characterization of their soliton and breather gases. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  5. Abstract We derive the Whitham modulation equations for the Zakharov–Kuznetsov equation via a multiple scales expansion and averaging two conservation laws over one oscillation period of its periodic traveling wave solutions. We then use the Whitham modulation equations to study the transverse stability of the periodic traveling wave solutions. We find that all periodic solutions traveling along the first spatial coordinate are linearly unstable with respect to purely transversal perturbations, and we obtain an explicit expression for the growth rate of perturbations in the long wave limit. We validate these predictions by linearizing the equation around its periodic solutions and solving the resulting eigenvalue problem numerically. We also calculate the growth rate of the solitary waves analytically. The predictions of Whitham modulation theory are in excellent agreement with both of these approaches. Finally, we generalize the stability analysis to periodic waves traveling in arbitrary directions and to perturbations that are not purely transversal, and we determine the resulting domains of stability and instability. 
    more » « less
  6. Abstract Two-dimensional reductions of the Kadomtsev–Petviashvili(KP)–Whitham system, namely the overdetermined Whitham modulation system for five dependent variables that describe the periodic solutions of the KP equation, are studied and characterized. Three different reductions are considered corresponding to modulations that are independent ofx, independent ofy, and oft(i.e. stationary), respectively. Each of these reductions still describes dynamic, two-dimensional spatial configurations since the modulated cnoidal wave, generically, has a nonzero speed and a nonzero slope in thexyplane. In all three of these reductions, the integrability of the resulting systems of equations is proven, and various other properties are elucidated. Compatibility with conservation of waves yields a reduction in the number of dependent variables to two, three and four, respectively. As a byproduct of the stationary case, the Whitham modulation system for the classical Boussinesq equation is explicitly obtained. 
    more » « less
  7. Abstract The Whitham modulation equations for the defocusing nonlinear Schrödinger (NLS) equation in two, three and higher spatial dimensions are derived using a two-phase ansatz for the periodic traveling wave solutions and by period-averaging the conservation laws of the NLS equation. The resulting Whitham modulation equations are written in vector form, which allows one to show that they preserve the rotational invariance of the NLS equation, as well as the invariance with respect to scaling and Galilean transformations, and to immediately generalize the calculations from two spatial dimensions to three. The transformation to Riemann-type variables is described in detail; the harmonic and soliton limits of the Whitham modulation equations are explicitly written down; and the reduction of the Whitham equations to those for the radial NLS equation is explicitly carried out. Finally, the extension of the theory to higher spatial dimensions is briefly outlined. The multidimensional NLS-Whitham equations obtained here may be used to study large amplitude wavetrains in a variety of applications including nonlinear photonics and matter waves. 
    more » « less